The working memory basis of normal and pathological speech dysfluencies

L. Van der Linden, A. Szmalec, C. Moerenhout, G. Reunes & R. Hartsuiker

1 Psychological Sciences Research Institute, Université Catholique de Louvain, Belgium
2 Department of Speech, Language and Hearing Sciences, Vesalius University College Ghent, Belgium
3 vzw BEST, Ghent, Belgium
4 Department of Experimental Psychology, Ghent University, Belgium

Theoretical background

- We aim to investigate the involvement of working memory (executive control) resources in the production of speech dysfluencies.
- Some dual-task studies report an increase in stuttering behaviors under conditions of divided attention (e.g., Bosshardt, 2002), while other studies rather claim that stuttering is reduced under dual-task demands (e.g., Vasic & Wijnen, 2005).
- Assumption that stuttering is a consequence of hypervigilant speech-monitoring system, at the level of brain areas responsible for executive control (e.g., right Inferior Frontal Gyrus, rIFG; Loucks, Kraft, Choo, Sharma, & Ambrose, 2012).

Predictions

- If stuttering is a consequence of hypervigilance in speech-monitoring, we predict:
 1. Decrease of speech dysfluencies under conditions of divided attention in diagnosed stutterers (≠ matched controls), using a picture-network description task (EXPERIMENT 1).
 2. Better performance for diagnosed stutterers in an executive control task, a color-matching task involving inhibition and updating, that has been shown to rely on the inferior frontal cortex (IFC; Verbruggen, Aron, Stevens, & Chambers, 2010) (EXPERIMENT 2).

Participants

Twenty (n=20) adult diagnosed stuttersers (M = 26.10 years, SD = 8.50) and controls (M = 26.95, SD = 8.48) matched on age, gender and education level.

Design

2 (group: control vs. stutterer) x 2 (condition: single task vs. dual task)

Dual task = divided attention using executive control secondary task (i.e., sound discrimination task).

Dependent variables: total # dysfluencies in general, self-corrections, repetitions, extensions and stuttering during network description.

Conclusion

Divided attention increases dysfluencies in normal speakers but decreases stuttering in diagnosed stuttersers, in line with hypervigilant speech monitoring account.

Acknowledgements

The authors would like to thank the members of vzw BEST for their participation.